Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Lancet ; 401(10393): e21-e33, 2023 Jun 17.
Article in English | MEDLINE | ID: covidwho-20236983

ABSTRACT

BACKGROUND: The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. METHODS: We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7 and May 29, 2020. Patients who died before follow-up; patients for whom follow-up would be difficult because of psychotic disorders, dementia, or readmission to hospital; those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism; those who declined to participate; those who could not be contacted; and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5-6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received SARS-CoV-2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. FINDINGS: In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 years (IQR 47·0-65·0) and 897 (52%) were male and 836 (48%) were female. The follow-up study was done from June 16 to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 days (175·0-199·0). Fatigue or muscle weakness (52%, 855 of 1654) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1616) of patients. The proportions of 6-min walking distance less than the lower limit of the normal range were 17% for those at severity scale 3, 13% for severity scale 4, and 28% for severity scale 5-6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5-6, and median CT scores were 3·0 (IQR 2·0-5·0) for severity scale 3, 4·0 (3·0-5·0) for scale 4, and 5·0 (4·0-6·0) for scale 5-6. After multivariable adjustment, patients showed an odds ratio (OR) of 1·61 (95% CI 0·80-3·25) for scale 4 versus scale 3 and 4·60 (1·85-11·48) for scale 5-6 versus scale 3 for diffusion impairment; OR 0·88 (0·66-1·17) for scale 4 versus scale 3 and OR 1·76 (1·05-2·96) for scale 5-6 versus scale 3 for anxiety or depression, and OR 0·87 (0·68-1·11) for scale 4 versus scale 3 and 2·75 (1·61-4·69) for scale 5-6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with an estimated glomerular filtration rate (eGFR) of 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. INTERPRETATION: At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. FUNDING: National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.


Subject(s)
COVID-19 , Sleep Initiation and Maintenance Disorders , Humans , Male , Female , Middle Aged , Aged , COVID-19/complications , SARS-CoV-2 , Patient Discharge , Cohort Studies , Follow-Up Studies , Quality of Life , Fatigue
2.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2320842

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
3.
Microbiol Spectr ; 11(3): e0488122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2305436

ABSTRACT

The increased transmissibility of SARS-CoV-2 variants of concern (VOCs) has raised questions regarding the environmental stability of these viruses. Although a prolonged survival time has been reported for SARS-CoV-2, how long new variants can persist on contaminated surfaces and how environmental factors affect the persistence time are not fully characterized. The present study provides a comprehensive assessment of the stability of Omicron variants BA.1 and BA.5, which are currently circulating strains, on the surfaces of widely used transport packaging materials. By monitoring viable virus detection over a 7-day period under different environmental conditions, it was found that the environmental stability of SARS-CoV-2 Omicron variants depended heavily on the surface type, temperature, and virus concentration. In addition, virus nucleic acid exhibited high stability on the material surface independent of whether viable virus was detected. These findings provide useful information for logistics practitioners and the general public to appropriately deal with transport items under different conditions to minimize the risk of epidemic transmission. IMPORTANCE This study shows the environmental stability of SARS-CoV-2 Variants Omicron BA.1 and BA.5 on surfaces of widely used transport packaging materials. The findings demonstrate that the environmental stability of the SARS-CoV-2 Omicron variants varies based on material type. The viability of SARS-CoV-2 on material surfaces depends heavily on temperature and viral titer. Low temperatures and high viral titers promote virus survival. Moreover, in contrast to virus viability, virus nucleic acid exhibits high stability on the surfaces of widely used materials, making the detection of virus nucleic acid unsuitable for evaluating the risk of epidemic transmission.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2/genetics , Cold Temperature
4.
Emerg Microbes Infect ; 12(1): 2202263, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2295932

ABSTRACT

The adaptive immunity against SARS-CoV-2 prototype strain and Omicron sublineages induced by BA.1 breakthrough infection in vaccinees of inactivated COVID-19 vaccines have not been well characterized. Here, we report that BA.1 breakthrough infection induced mucosal sIgA and resulted in higher IgG titers against prototype strain and Omicron sublineages in vaccinees than in vaccine naïve-infected individuals. BA.1 breakthrough infection boosted antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis to prototype strain and BA.1, BA.1.1, BA.2, BA.2.12.1, and BA.2.75 but not BA.4/5 and induced neutralization against prototype strain and BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5 but not BF.7, BQ.1, and XBB. In total, BA.1 breakthrough infection individuals produced less extensive sIgA, plasma IgG and NAb responses against Omicron sublineages compared with those against prototype strain. Further, BA.1 breakthrough infection induced recall B cell response to prototype strain and Omicron variant, primarily targeting memory B cells producing conserved epitopes. Memory T cell responses against Omicron is largely preserved. Individuals with vaccine booster did not induce more beneficial immune responses to Omicron sublineages upon BA.1 breakthrough infection than those with primary vaccine dose only. The breakthrough infection individuals produced stronger adaptive immunity than those of inactivated vaccine-healthy individuals. These data have important implications for understanding the vaccine effectiveness and adaptive immunity to breakthrough infection in individuals fully immunized with inactivated vaccines. Omicron sublineages, especially for those emerged after BA.4/5 strain, evade NAb responses induced by BA.1 breakthrough infection. It is urgent to optimize the vaccine immunogen design and formulations to SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Breakthrough Infections , SARS-CoV-2 , T-Lymphocytes , Immunoglobulin A, Secretory , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
5.
Animal Model Exp Med ; 3(1): 93-97, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-2288057

ABSTRACT

BACKGROUND: Since December 2019, an outbreak of the Corona Virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, has become a public health emergency of international concern. The high fatality of aged cases caused by SARS-CoV-2 was a need to explore the possible age-related phenomena with non-human primate models. METHODS: Three 3-5 years old and two 15 years old rhesus macaques were intratracheally infected with SARS-CoV-2, and then analyzed by clinical signs, viral replication, chest X-ray, histopathological changes and immune response. RESULTS: Viral replication of nasopharyngeal swabs, anal swabs and lung in old monkeys was more active than that in young monkeys for 14 days after SARS-CoV-2 challenge. Monkeys developed typical interstitial pneumonia characterized by thickened alveolar septum accompanied with inflammation and edema, notably, old monkeys exhibited diffuse severe interstitial pneumonia. Viral antigens were detected mainly in alveolar epithelial cells and macrophages. CONCLUSION: SARS-CoV-2 caused more severe interstitial pneumonia in old monkeys than that in young monkeys. Rhesus macaque models infected with SARS-CoV-2 provided insight into the pathogenic mechanism and facilitated the development of vaccines and therapeutics against SARS-CoV-2 infection.

7.
Biosaf Health ; 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2262536

ABSTRACT

We analyzed variations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during a flight-related cluster outbreak of coronavirus disease 2019 (COVID-19) in Shenzhen, China, to explore the characteristics of SARS-CoV-2 transmission and intra-host single nucleotide variations (iSNVs) in a confined space. Thirty-three patients with COVID-19 were sampled, and 14 were resampled 3-31 days later. All 47 nasopharyngeal swabs were deep sequenced. iSNVs and similarities in the consensus genome sequence were analyzed. Three SARS-CoV-2 variants of concern, Delta (n=31), Beta (n=1), and C.1.2 (n=1), were detected among the 33 patients. The viral genome sequences from 30 Delta-positive patients had similar SNVs; 14 of these patients provided two successive samples. Overall, the 47 sequenced genomes contained 164 iSNVs. Of the 14 paired (successive) samples, the second samples (T2) contained more iSNVs (median: 3; 95% confidence interval [95%CI]: 2.77-10.22) than did the first samples (T1; median: 2; 95%CI: 1.63-3.74; Wilcoxon test, P=0.021). 38 iSNVs were detected in T1 samples, and only seven were also detectable in T2 samples. Notably, T2 samples from two of the 14 paired samples had additional mutations than the T1 samples. The iSNVs of the SARS-CoV-2 genome exhibited rapid dynamic changes during a flight-related cluster outbreak event. Intra-host diversity increased gradually with time, and new site mutations occurred in vivo without a population transmission bottleneck. Therefore, we could not determine the generational relationship from the mutation site changes alone.

8.
Small ; : e2206349, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2253696

ABSTRACT

Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.

10.
Signal Transduct Target Ther ; 7(1): 400, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2230613

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has devastated global health. Identifying key host factors essential for SARS-CoV-2 RNA replication is expected to unravel cellular targets for the development of broad-spectrum antiviral drugs which have been quested for the preparedness of future viral outbreaks. Here, we have identified host proteins that associate with nonstructural protein 12 (nsp12), the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 using a mass spectrometry (MS)-based proteomic approach. Among the candidate factors, CDK2 (Cyclin-dependent kinase 2), a member of cyclin-dependent kinases, interacts with nsp12 and causes its phosphorylation at T20, thus facilitating the assembly of the RdRp complex consisting of nsp12, nsp7 and nsp8 and promoting efficient synthesis of viral RNA. The crucial role of CDK2 in viral RdRp function is further supported by our observation that CDK2 inhibitors potently impair viral RNA synthesis and SARS-CoV-2 infection. Taken together, we have discovered CDK2 as a key host factor of SARS-CoV-2 RdRp complex, thus serving a promising target for the development of SARS-CoV-2 RdRp inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cyclin-Dependent Kinase 2/genetics , Proteomics , COVID-19/genetics , Viral Nonstructural Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism
11.
Viral Immunol ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2232697

ABSTRACT

COVID-19 is a globally infectious viral epidemic of great public health concern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) plays its role as the receptor for SARS-CoV-2 through binding with S protein and the binding results in ACE2 expression decrease. The change of ACE2 is supposed to elicit a series of cellular and molecular events. Other than as the receptor, ACE2's roles on infection by regulating other molecules need to be further studied during SARS-CoV-2 infection. In the present study, we established the ACE2 knockdown model using Vero E6 cells to study how ACE2 influenced the downstream signaling molecules. Analysis of transcriptome sequencing discovered that ACE2 alteration per se caused the alteration of immune factors, including some related to the viral infection-related signaling pathways. We found that ACE2 silencing induced the reduced interferon-induced transmembrane protein 3 (IFITM3) expression. Overexpression of IFITM3 promoted the SARS-CoV-2 pseudovirus infection of Vero E6 cells lacking the ACE2. It indicates that ACE2 can affect IFITM3 expression and function to affect the SARS-CoV-2 infection. Our results reveal possible mechanisms influencing SARS-CoV-2 infectivity and contribute to explaining the rapid spread and pathogenesis especially in the case of ACE2 low expression.

12.
PLoS Pathog ; 19(1): e1011116, 2023 01.
Article in English | MEDLINE | ID: covidwho-2214825

ABSTRACT

Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.


Subject(s)
COVID-19 , Chiroptera , Animals , Mice , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism
13.
Chin Med J (Engl) ; 135(10): 1213-1222, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-2190861

ABSTRACT

ABSTRACT: The pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation/genetics , Pandemics , SARS-CoV-2/genetics , Virulence
14.
Viruses ; 14(11)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116258

ABSTRACT

SARS-CoV-2 has become a global threat to public health. Infected individuals can be asymptomatic or develop mild to severe symptoms, including pneumonia, respiratory distress, and death. This wide spectrum of clinical presentations of SARS-CoV-2 infection is believed in part due to the polymorphisms of key genetic factors in the population. In this study, we report that the interferon-induced antiviral factor IFITM3 inhibits SARS-CoV-2 infection by preventing SARS-CoV-2 spike-protein-mediated virus entry and cell-to-cell fusion. Analysis of a Chinese COVID-19 patient cohort demonstrates that the rs12252 CC genotype of IFITM3 is associated with SARS-CoV-2 infection risk in the studied cohort. These data suggest that individuals carrying the rs12252 C allele in the IFITM3 gene may be vulnerable to SARS-CoV-2 infection and thus may benefit from early medical intervention.


Subject(s)
COVID-19 , Membrane Proteins , RNA-Binding Proteins , Humans , Alleles , COVID-19/genetics , Interferons , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2 , Disease Susceptibility
15.
Lancet Microbe ; 3(5): e348-e356, 2022 05.
Article in English | MEDLINE | ID: covidwho-1984300

ABSTRACT

Background: The memory immune response is crucial for preventing reinfection or reducing disease severity. However, the robustness and functionality of the humoral and T-cell response to SARS-CoV-2 remains unknown 12 months after initial infection. The aim of this study is to investigate the durability and functionality of the humoral and T-cell response to the original SARS-CoV-2 strain and variants in recovered patients 12 months after infection. Methods: In this longitudinal cohort study, we recruited participants who had recovered from COVID-19 and who were discharged from the Wuhan Research Center for Communicable Disease Diagnosis and Treatment at the Chinese Academy of Medical Sciences, Wuhan, China, between Jan 7 and May 29, 2020. Patients received a follow-up visit between Dec 16, 2020, and Jan 27, 2021. We evaluated the presence of IgM, IgA, and IgG antibodies against the SARS-CoV-2 nucleoprotein, Spike protein, and the receptor-binding domain 12 months after initial infection, using ELISA. Neutralising antibodies against the original SARS-CoV-2 strain, and the D614G, beta (B.1.351), and delta (B.1.617.2) variants were analysed using a microneutralisation assay in a subset of plasma samples. We analysed the magnitude and breadth of the SARS-CoV-2-specific memory T-cell responses using the interferon γ (IFNγ) enzyme-linked immune absorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) assay. The antibody response and T-cell response (ie, IFN-γ, interleukin-2 [IL-2], and tumour necrosis factor α [TNFα]) were analysed by age and disease severity. Antibody titres were also analysed according to sequelae symptoms. Findings: We enrolled 1096 patients, including 289 (26·4%) patients with moderate initial disease, 734 (67·0%) with severe initial disease, and 73 (6·7%) with critical initial disease. Paired plasma samples were collected from 141 patients during the follow-up visits for the microneutralisation assay. PBMCs were collected from 92 of 141 individuals at the 12-month follow-up visit, of which 80 were analysed by ELISpot and 92 by ICS assay to detect the SARS-CoV-2-specific memory T-cell responses. N-IgG (899 [82·0%]), S-IgG (1043 [95·2%]), RBD-IgG (1032 [94·2%]), and neutralising (115 [81·6%] of 141) antibodies were detectable 12 months after initial infection in most individuals. Neutralising antibodies remained stable 6 and 12 months after initial infection in most individuals younger than 60 years. Multifunctional T-cell responses were detected for all SARS-CoV-2 viral proteins tested. There was no difference in the magnitude of T-cell responses or cytokine profiles in individuals with different symptom severity. Moreover, we evaluated both antibody and T-cell responses to the D614G, beta, and delta viral strains. The degree of reduced in-vitro neutralising antibody responses to the D614G and delta variants, but not to the beta variant, was associated with the neutralising antibody titres after SARS-CoV-2 infection. We also found poor neutralising antibody responses to the beta variant; 83 (72·2%) of 115 patients showed no response at all. Moreover, the neutralising antibody titre reduction of the recovered patient plasma against the delta variant was similar to that of the D614G variant and lower than that of the beta variant. By contrast, T-cell responses were cross-reactive to the beta variant in most individuals. Importantly, T-cell responses could be detected in all individuals who had lost the neutralising antibody response to SARS-CoV-2 12 months after the initial infection. Interpretation: SARS-CoV-2-specific neutralising antibody and T-cell responses were retained 12 months after initial infection. Neutralising antibodies to the D614G, beta, and delta viral strains were reduced compared with those for the original strain, and were diminished in general. Memory T-cell responses to the original strain were not disrupted by new variants. This study suggests that cross-reactive SARS-CoV-2-specific T-cell responses could be particularly important in the protection against severe disease caused by variants of concern whereas neutralising antibody responses seem to reduce over time. Funding: Chinese Academy of Medical Sciences, National Natural Science Foundation, and UK Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Cytokines , Humans , Immunoglobulin G , Longitudinal Studies , T-Lymphocytes
16.
J Med Virol ; 94(12): 5746-5757, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1976742

ABSTRACT

We evaluated and compared humoral immune responses after inactivated coronavirus disease 2019 (COVID-19) vaccination among naïve individuals, asymptomatically infected individuals, and recovered patients with varying severity. In this multicenter, prospective cohort study, blood samples from 666 participants were collected before and after 2 doses of inactivated COVID-19 vaccination. Among 392 severe acute respiratory syndrome coronavirus 2-naïve individuals, the seroconversion rate increased significantly from 51.8% (median antispike protein pan-immunoglobulins [S-Igs] titer: 0.8 U/ml) after the first dose to 96% (median S-Igs titer: 79.5 U/ml) after the second dose. Thirty-two percent of naïve individuals had detectable neutralizing antibodies (NAbs) against the original strain but all of them lost neutralizing activity against the Omicron variant. In 274 individuals with natural infection, humoral immunity was significantly improved after a single vaccine dose, with median S-Igs titers of 596.7, 1176, 1086.5, and 1828 U/ml for asymptomatic infections, mild cases, moderate cases, and severe/critical cases, respectively. NAb titers also improved significantly. However, the second dose did not substantially increase antibody levels. Although a booster dose is needed for those without infection, our findings indicate that recovered patients should receive only a single dose of the vaccine, regardless of the clinical severity, until there is sufficient evidence to confirm the benefits of a second dose.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
17.
Emerg Microbes Infect ; 11(1): 1819-1827, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915486

ABSTRACT

The emergence of SARS-CoV-2 Omicron and other variants of concern (VOCs) has brought huge challenges to control the COVID-19 pandemic, calling for urgent development of effective vaccines and therapeutic drugs. In this study, we focused on characterizing the impacts of divergent VOCs on the antiviral activity of lipopeptide-based fusion inhibitors that we previously developed. First, we found that pseudoviruses bearing the S proteins of five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) and one variant of interest (Lambda) exhibited greatly decreased infectivity relative to the wild-type (WT) strain or single D614G mutant, especially the Omicron pseudovirus. Differently, the most of variants exhibited an S protein with significantly enhanced cell fusion activity, whereas the S protein of Omicron still mediated decreased cell-cell fusion. Next, we verified that two lipopeptide-based fusion inhibitors, IPB02V3 and IPB24, maintained the highly potent activities in inhibiting various S proteins-driven cell fusion and pseudovirus infection. Surprisingly, both IPB02V3 and IPB24 lipopeptides displayed greatly increased potencies against the infection of authentic Omicron strain relative to the WT virus. The results suggest that Omicron variant evolves with a reduced cell fusion capacity and is more sensitive to the inhibition of fusion-inhibitory lipopeptides; thus, IPB02V3 and IPB24 can be further developed as potent, broad-spectrum antivirals for combating Omicron and the potential future outbreak of other emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Anti-Retroviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Lipopeptides/pharmacology , Pandemics/prevention & control , SARS-CoV-2/genetics , Virus Internalization
18.
Powder Technol ; 405: 117520, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1851954

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has led to severe social and economic disruption worldwide. Although currently no consent has been reached on a specific therapy that can treat COVID-19 effectively, several inhalation therapy strategies have been proposed to inhibit SARS-CoV-2 infection. These strategies include inhalations of antiviral drugs, anti-inflammatory drugs, and vaccines. To investigate how to enhance the therapeutic effect by increasing the delivery efficiency (DE) of the inhaled aerosolized drug particles, a patient-specific tracheobronchial (TB) tree from the trachea up to generation 6 (G6) with moderate COVID-19 symptoms was selected as a testbed for the in silico trials of targeted drug delivery to the lung regions with pneumonia alba, i.e., the severely affected lung segments (SALS). The 3D TB tree geometry was reconstructed from spiral computed tomography (CT) scanned images. The airflow field and particle trajectories were solved using a computational fluid dynamics (CFD) based Euler-Lagrange model at an inhalation flow rate of 15 L/min. Particle release maps, which record the deposition locations of the released particles, were obtained at the inlet according to the particle trajectories. Simulation results show that particles with different diameters have similar release maps for targeted delivery to SALS. Point-source aerosol release (PSAR) method can significantly enhance the DE into the SALS. A C++ program has been developed to optimize the location of the PSAR tube. The optimized simulations indicate that the PSAR approach can at least increase the DE of the SALS by a factor of 3.2× higher than conventional random-release drug-aerosol inhalation. The presence of the PSAR tube only leads to a 7.12% change in DE of the SALS. This enables the fast design of a patient-specific treatment for reginal lung diseases.

19.
Biosaf Health ; 4(3): 186-192, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821155

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health; therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original strain (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insights into the development of novel therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL